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Abstract

David Marhao
B.S., Appalachian State University
M.A., Appalachian State University

Chairperson: Dr. Nadun Kulasekera Mudiyanselage

In this project, a proposal for a framework to use the local radial basis functions (RBFs)

method to approximate solutions for variations of the transport equation is introduced. The

approach is also called the Radial Basis Functions - Finite Difference (RBF-FD) method.

We discuss the difficulties of the method while also introducing solutions to resolve some of

the issues that arise. The approach was used to solve the 1D transport equation that models

contaminant water transport in a semi-infinite domain. Furthermore, the RBF-FD method

was also used to solve the transport equation when decay and degradation are present in

the problem with both finite and infinite domains. We then observed that the RBF-FD

numerical approach gives high-accuracy approximations of the solutions transport equation

up to machine accuracy.
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1 Introduction

1.1 History of radial basis functions

The radial basis functions (RBF) method was first introduced in 1970 by Rolland Hardy

when multiquadratic (MQ) radial functions were used for interpolation [7]. While polyno-

mial interpolation looks decent on paper, it runs into serious issues when solving higher

dimensional problems because the non-singularity of the interpolation matrix cannot be

guaranteed. However, this issue in higher dimensional problems does not arise when using

selected radial basis functions. For MQ RBFs, Micchelli, in 1986, proved non-singularity by

showing the interpolation matrices were positive definite [15].

The method was then further pioneered by M.J.D. Powell and his collaborators at the

University of Cambridge. With technology becoming more prevalent in the early 2000s,

several monographs on RBFs (or with extensive RBF content) appeared in rapid succession

between 2003 and 2007 written by Buhmann [2], Iske [13], Wendland [19], and Fasshauer

[6]. These papers reflected an increasing interest that RBFs could be used as a practical

computational procedure for increasingly larger scale applications [7].

1.2 RBF method definition and non-singularity

A radially symmetric real valued function ϕ : [0,∞) → R is said to be a radial basis function

centered at x⃗k, if ϕ(x⃗) = ϕ(||x⃗ − x⃗k||) for x⃗ ∈ Rn. The norm used in the definition is

the Euclidean 2-norm. There are several RBFs that are used in literature. These RBFs

can be generally separated into two categories: infinitely smooth and piecewise smooth
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RBFs. Infinitely smooth RBFs include the Gaussian, Multiquadric, Inverse Multiquadric,

and Inverse Quadratic RBFs, while piecewise smooth RBFs include Polyharmonic Spline

and Thin plate spline RBFs. These RBFs that are commonly found in prevalent literature

are defined in Table 1 [7].

Table 1: Most widely used RBFs

Types of RBFs The Function Form

Gaussian (GA) e−(εr)2

Multiquadric (MQ)
√

1 + (εr)2

Inverse Multiquadric (IMQ) 1√
1+(εr)2

Inverse Quadratic (IQ) 1
1+(εr)2

Polyharmonic Spline (PHS) r2m+1 or r2m log r
Thin plate spline (TPS) r2 log r

An important note about infinitely smooth RBFs is the use of a shape parameter (ε).

This parameter governs how steep or shallow the RBFs become. A higher ε leads to a steeper

RBF, while a smaller shape parameter value yields a flatter basis function. The conditioning

of the algorithm is impacted by the choice of the shape parameter as well. To date, no

computationally efficient method to choose an optimal shape parameter for a given problem

has been found.

To solve an interpolation problem using the RBF methodology, assume we are given a

set of data (x⃗i, fi), where i = 1, . . . , N , x⃗i ∈ R, and fi ∈ R. The goal is to find a continuous

function S that satisfies the interpolation conditions S(x⃗i) = fi. We then assume that the

interpolant S(x⃗) is of the form:

S(x⃗) =
N∑
i=1

λiϕ(||x⃗− x⃗i||) (1)

From here, we can obtain a system of equations: Aλ⃗ = f⃗ , where, f⃗ is a vector of fi, A

is the n × n matrix of the coefficients of ϕ(||x⃗ − x⃗i||), and λ⃗ as a n × 1 vector of unknown

values. A is also typically called the collocation matrix [7]. The sketch of the RBF method
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using this system of equations can be seen in the form of:



ϕ(∥x1 − x1∥) ϕ(∥x1 − x2∥) · · · ϕ(∥x1 − xn∥)

ϕ(∥x2 − x1∥) ϕ(∥x2 − x2∥) · · · ϕ(∥x2 − xn∥)
...

...
. . .

ϕ(∥xn − x1∥) ϕ(∥xn − x2∥) · · · ϕ(∥xn − xn∥)





λ1

λ2

...

λn


=



f1

f2
...

fn


(2)

In higher dimensional pseudospectral (PS) methods, if we move two nodes (switch two

rows), they could end up changing the sign of the determinant, which then implies that

the determinant must be zero. Therefore, by the Mairhuber-Curtis Theorem, for a well-

posed multivariate scattered data interpolation problem, the basis depends on the data

locations, essentially ruling out the use of PS methods. The RBF method navigates around

the shortcomings of the PS methods by using radial functions with Euclidean-2 norms defined

by ϕ(||x⃗− x⃗i||). Now when moving two nodes, this interchanges not only two rows but also

two columns of A, leaving the sign of the determinant unaffected. Therefore, the singularity

argument found using PS methods no longer applies.

This approach is called the Global RBF method because, per each node, the method

utilizes all the nodes in the data set. The attractiveness of this method is that it is capable of

producing highly accurate interpolants to sufficiently smooth underlying functions. However,

there are several disadvantages to using the global RBF method, which will be explored in

the next subsection.

1.3 Challenges of using the RBF method

1.3.1 Non-singularity of the collocation matrices

To obtain a unique solution for equation 2, matrix A has to be non-singular. There are the-

oretical proofs that guarantee the non-singularity of the matrix A for all infinitely smooth

RBFs presented in Table 1. However, the methodology of the proofs is not universal for
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all infinitely smooth RBFs. There are certain RBFs that produce strictly positive definite

matrices. Given that positive definite matrices produce strictly positive eigenvalues, this

guarantees non-singularity in the matrix. Some examples of RBFs that produce strictly pos-

itive definitive matrices are GA and IMQ RBFs. These RBFs belong to a class of completely

monotonic functions, which have properties that give rise to producing strictly positive defi-

nite matrices [6]. Some other RBFs, such as PHS RBFs, to date, do not have any theoretical

results that guarantee the well-posedness of the interpolation problem. There are ways to

circumnavigate this issue, which will be discussed in a later section.

1.3.2 Computational cost

The global RBF method can produce spectrally accurate interpolates for infinitely smooth

underlying functions, provided that an infinitely smooth RBFs is used. However, the method

is computationally expensive. The global approach leads to dense matrices. The compu-

tational cost associated with inverting the collocation matrix is then O(N3), where N is

the total number of nodes. This means that using the global RBF method is only efficient

for small data sets, causing a serious limitation as most problems have data sets that are

sufficiently large in size to produce serious computation costs [16].

1.3.3 Shape parameter

One of the benefits of using the RBF methodology is its capacity to produce highly accurate

interpolants to sufficiently smooth underlying functions. For example, if an infinitely smooth

RBF is used, we can expect error decay as fast as O(e−c/h), where h is the average distance

between two nodes and c is a constant. This error decay changes for piece-wise smooth

functions. Alternatevly, when a PHS RBF of order m is used (ϕ(r) = rm), the error decay

will then be O(hm+1). To demonstrate, a cubic radial function ϕ(r) = r3 has a discontinuity

in the 3rd derivative; therefore, the approximation will be O(h4) [16].

Even though infinitely smooth RBFs have the potential to yield spectral convergence,
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the accuracy is heavily dictated by the shape parameter. An interesting phenomenon that

occurs with infinitely smooth RBFs is if we find a shape parameter that gives great accuracy.

Using this shape parameter could lead to a collocation matrix with a high condition number.

The effect of the shape parameter on accuracy and stability is known as the uncertainty, or

trade-off principle [7]. The effects of the shape parameter can be seen by graphing the

interpolation error for a function f(x) versus the shape parameter. Consider Figure 1.

Figure 1: The interpolation error of f(x) = 59
67+(x+1/7)2+(y−1/11)2

when ε → 0

As shown in Figure 1, when ε → 0, the error seems to decay up to an optimal point.

If ε continues to decrease after the optimal point, the error starts to become erratic. This

is due to the ill-conditioning of the collocation matrix. In 2002, Driscoll and Fornberg [4]

showed that the underlying problem is indeed well posed, but the numerical algorithm is

ill-conditioned. That means that the error is increasing mainly because of the numerical

ill-conditioning. Furthermore, this means that for RBFs, we have to find an optimal shape

parameter to produce the minimal error. However, to date, there is no clear way to find an

optimal shape parameter as it depends on many factors.

There are computationally expensive ways to circumnavigate this issue. For instance, in

2004, Fornberg and Wright [9] introduced a new method called the Contour-Pade method,
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which allows computations to be done stably when ε → 0. However, similar to the global

RBF method, this is limited to small data sets as it is computationally expensive. Later, a

variable shape parameter approach was theorized by Fornberg and Zuev [10]. Furthermore,

some other stable algorithms that are not limited by the size of data sets, such as RBF-QR

and RBF-GA, were also introduced. However, again, they are still computationally expensive

to use. Therefore, a solution to the issue of picking a shape parameter is to choose an RBF

that does not use one, but the RBFs that do not use the shape parameter ε run into the

issues of not producing non-singular matrices, as discussed earlier.

1.4 Remedies to some of the issues with the RBF method

1.4.1 Local RBF method

The global RBF method is not a computationally efficient method as it produces dense

matrices. One workaround is to use the local RBF method. The idea is to use the n nearest

neighboring nodes per each center node to gather information (n << N , N is the total

number of nodes) instead of using the information from all the nodes in the domain. For

instance, as shown in Figure 2, for the center node xc, we calculate the distance to only its

nearest neighbors.

Figure 2: A node distribution for RBF-FD with local neighbor search
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This means the approximation is a local one rather than being global one. When using

this with the RBF method, this produces sparse matrices and cuts down on computation

costs. There are several methods built into various mathematical programs which can facil-

itate choosing local nodes. Sparse matrices are desired when working with large volumes of

nodes as they do not require as much storage or computation cost to use [6, 16].

1.4.2 Enriching the basis with polynomials

A convenient way to circumnavigate the usage of the shape parameter is to use a piece-wise

smooth RBF function such as PHS. However, the drawback is that piece-wise smooth RBFs

such as PHS do not inherently produce non-singular matrices. One solution to this issue is

to add low-order polynomial terms to the interpolation basis. Several of these polynomial

terms are found in Table 2 [14].

Table 2: Augmented polynomial terms

Polynomial Degree 1D 2D 3D
0 1 1 1
1 x x, y x, y, z
2 x2 x2, xy, y2 x2, xy, xz, y2, yz, z2

3 x3 x3, x2y, yx2, y3 x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3

This leads to a redefined RBF interpolant of:

S(x⃗) =
N∑
i=1

λiϕ(||x⃗− x⃗i||) +
M∑
k=1

µipi(x⃗), x⃗ ∈ Rs (3)

Subject to the constraints:

N∑
j=1

λjpk(x⃗i) = 0, k = 1, 2, ...,M (4)

Where p1, ..., pM is a basis for the M dimensional space of polynomials of degree at most

m − 1 in s variables and µi is an unknown constant. The constraint (4) will ensure that

the system of equations will produce a unique solution and will have a square symmetric
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system of equations [7]. A side effect of using augmented RBFs of the form (3) is that if

the interpolation data represents a polynomial of degree m − 1, then the polynomial will

be represented exactly by the new equation. Even further, the approximation will display

algebraic convergence.

To implement the new equation (3) and the constraints from (4), a new system of equa-

tions is used as shown below:



| 1 x1 y1

A | ...
...

...

| 1 xn yn

|

1 . . . 1 |

x1 · · · xn | 0

y1 . . . yn |





λ1

...

λn

µ1

µ2

µ3



=



f1
...

fn

0

0

0



(5)

When constructing the new system of equations, an assumption was used that the aug-

mented polynomial of up to degree one was used. However, generally the system of equations

in 5 can be generalized as:

 A P

P T O


λ⃗
µ⃗

 =

f⃗
0⃗

 (6)

Where A is the N ×N collocation matrix defined in (1) and (2) and λ⃗ is a N × 1 vector,

and µ⃗ is a M × 1 vector. P is the transpose of the Vandermonde matrix, which is an

important tool for interpolation [12].

The PHS radial functions belong to a class of strictly conditionally positive definite

functions. It can be proved that the general equation (6) produces a uniquely solvable
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system when matrix A is composed of PHS basis functions. Therefore, the combination of

PHS RBFs and polynomials is an excellent solution for the issue of choosing an optimal

shape parameter as it avoids the issue entirely. Coupled with the local RBF method, the

issues discussed earlier are primarily solved. The polynomial augmentation, along with the

local approach, is called the Radial Basis Function based - Finite Difference Method (RBF-

FD).

RBF-FD method also mitigates the Runge Phenomenon when using polynomial approx-

imations. This phenomenon indicates that by interpolating over equally spaced nodes on a

fixed interval, the effect of increasing the number of nodes increases the error near bound-

aries significantly. This phenomenon, also known as the far field effect, is mitigated by the

constraints in equation (4) [1]. The RBF-FD method is primarily used to discretize space op-

erators of partial differential equations (PDEs). Therefore, the next subsection will provide

a brief introduction to PDEs.

1.5 Overview of partial differential equations

A differential equation is defined as an equation that relates the derivatives of one or more

unknown functions depending on one or more variables. These equations can be classified

into two broad categories: ordinary differential equations (ODEs) and partial differential

equations (PDEs). An ODE is a differential equation that contains only one independent

variable. A PDE is a differential equation that contains one or more independent variables

and partial derivatives of unknown functions. The order of a differential equation is defined

as the highest-order derivative that appears in the equation [18].

Differential Equations can be further classified as linear or non-linear equations. An nth

order differential equation is said to be linear if it can be written in the form:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ ...+ a1(x)

dy

dx
+ a0(x)y = g(x) (7)
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A linear ODE has to satisfy two conditions. First, the dependent variables and all their

derivatives in the equation are of power one. Second, all the coefficients and the function in

equation (7) are dependent only on the independent variable. If either of these two conditions

are not satisfied, the differential equation is considered non-linear. Another classification is

whether the differential equation is homogeneous or non-homogeneous. The homogeneous

linear equation has g(x) is 0; otherwise, it is considered a non-homogeneous linear equation.

This nomenclature applies to non-linear equations as well.

PDEs can usually be further classified into three broad categories: elliptic, parabolic,

and hyperbolic [18]. Consider the 2nd-order partial differential equation:

a (x, y)
∂2u

∂x2
+b (x, y)

∂2u

∂x∂y
+c (x, y)

∂2u

∂y2
+d (x, y)

∂u

∂x
+e (x, y)

∂u

∂y
+f (x, y) u = g (x, y) (8)

For the equation (8) to be elliptic, it has to satisfy the condition that b2 − 4ac < 0.

Subsequently for (8) to be considered hyperbolic if b2−4ac > 0 and parabolic if b2−4ac = 0.

The approach to solving PDEs can differ based on which of these three categories the PDE

falls into [18].

In solving differential equations or systems of differential equations, we could find a

general solution or a particular solution. However, in practice, the particular solution that

satisfies some specified conditions is most commonly preferred as it usually arises from an

area of application. These specified conditions usually fall under two general types.

The first type of condition requires to have specific values at a single point, usually

at the initial starting point. The problems that use this condition are traditionally called

initial value problems because the system has an assumption to start evolving from a fixed

initial point. The second type of condition requires to have specified values at different

points, usually at the beginning and end of the domain for the problem. The problems

with these conditions are traditionally known as boundary value problems. Boundary value
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problems can also be further categorized based on how the boundary conditions are defined.

The two most common types of boundary conditions are Dirichlet and Neumann boundary

conditions. Dirichlet boundary conditions specify the values which the solution needs to

have along the boundary, while Neumann boundary conditions specify the values of the

derivatives along the boundary. The final step in obtaining the particular solution involves

mostly algebraic operations that require either the initial or boundary conditions to be

accounted for [18, 21]. If the equations are nonlinear, however, the solution is not nearly

as easily obtained. Even finding analytical solutions to many linear differential equations

can be impossible or cumbersome. Therefore, a common technique to circumnavigate this is

to use numerical approximations. The accuracy of the approximations is dependent on the

numerical technique being used. [18,21].

The transport equation solved in this paper is a linear, elliptic partial differential equation

with both Dirichlet and Neumann boundary conditions.

1.6 Using RBF-FD method to solve PDEs

To solve PDEs using the RBF-FD method, a Method of Lines approach is used. First, the

RBF method is used to discretize the PDE in space. If the equation is time-dependent, this

particular approach converts the original equation to a system of ODEs. This is then later

solved using an appropriate numerical ODE solver. Looking at the methodology in more

detail, consider the initial-boundary value problem:


∂

∂t
u(x⃗, t) = Lu(x⃗, t), x⃗ ∈ Ω, t ∈ [0, T ]

u(x⃗, t) = g(x⃗, t), x⃗ ∈ ∂Ω, t ∈ [0, T ]

u(x⃗, 0) = h(x⃗), x⃗ ∈ Ω

(9)

Where L is any linear operator. An assumption is also given that u(x⃗, t) is a linear
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combination of RBFs and polynomials. However, n is the number of neighbors and hence,

the following process takes place locally in each cluster of nodes centered around a center

node xc. Considering the equation:

u(x⃗, t) =
n∑

i=1

λi ϕ(∥x⃗− x⃗i∥) +
M∑
k=1

µipj(x⃗), x⃗ ∈ Rs (10)

As discussed in Section 1.4.2, the equation leads to the system of equations:

Ã =

 A P

P T O


λ⃗
µ⃗

 =

u⃗
0⃗

 (11)

The next step is to apply the spatial operator L to the equation. This yields the equa-

tion:

Lu(x⃗, t) =
n∑

i=1

λi Lϕ(∥x⃗− x⃗i∥) +
M∑
k=1

µiLpj(x⃗), x⃗ ∈ Rs (12)

Since we are finding the derivative at x⃗ = x⃗c, we evaluate the equation at x⃗ = x⃗c, and

rewrite it as a system of equations. However, neither λ⃗ and µ⃗ change when the operator L is

applied. Therefore, since the collocation matrix A is non-singular, we can find both λ⃗i and

µ⃗i values from the equation and substitute them into the system of equations produced by

equation (12). This then produces:

Lu(x⃗c, t) =

[
Lϕx⃗=x⃗c Lpx⃗=x⃗c

]λ⃗
µ⃗


=

[
Lϕx⃗=x⃗c Lpx⃗=x⃗c

]
1×(n+M)

 A P

P T O


−1

(n+M)×(n+M)


u⃗
0⃗

 (13)

The 1 × (n + M) row vector found in the right-hand side of equation (13) contains
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differentiation weights of the operator L. The first n weights are then extracted, while the

lastM weights are discarded. These n weights are used to populate the differentiation matrix

D. The differentiation matrix (DM) defined as DM = BA−1 where B is the 1× (n+M) row

vector in equation (13). This is the discretized version of the operator L. The process used

to construct the DM is parallelizable, or in other words, the differentiation weights for each

of the center nodes can calculated simultaneously. The computation cost for this process is

O(n2 ·N), where N is the total number of nodes.

1.7 Conclusion

There are advantages to using the RBF-FD method to solve PDEs. It is not computationally

expensive to run and can easily be adapted into higher dimensions. If the algorithms for

the 1D case are known, they can easily be adapted/programmed to solve higher dimensional

problems. Since the RBFs can be used with a scattered node distribution, the method is

meshless [6]. Recent node placing algorithms have also become readily available [8] to use

generate quasi-uniform node distributions in 2D and 3D. The goal of this thesis is to use

the RBF-FD method to solve the transport equation and its variants. This has several

applications in various geosciences. Chapter 2 of this thesis defines what the transport

equation is and derives the equation based on mass continuity principles. Finally, in Chapters

3 and 4, the RBF method is adopted to solve the transport equation under different scenarios

numerically.
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2 Derivation of the transport equation

2.1 Transport equation and its physical properties

Transport is defined as the processes that determine the distribution of biogeochemical

species or heat in an environmental compartment [5]. This definition can be further simpli-

fied by representing transport as interactions of physical processes with an effect on either

species or heat. There are other relevant processes for the environment, like degradation and

decay and sorption. However, these processes are not usually considered pure transport pro-

cesses. Degradation and decay are discussed in their own chapter, while sorption is beyond

the scope of this thesis.

The process that defines transport can be split into two broad general types: advection

and diffusion/dispersion. The advection process refers to a particle that is being purely

moved from one place to another by a flow field [5]. Diffusion and dispersion refer to trans-

port processes that originate from concentration differences [5], essentially to a tendency

to equalize concentration gradients in a system. Differential equations can further describe

these processes. The process of deriving the differential equation for transport is by apply-

ing the principle of mass conservation and Fick’s Law. However, when dealing with heat

transport, a different equation is derived for the temperature by applying the principle of

energy conservation and by using Fourier’s Law [5].
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2.2 Mass continuity

The general continuity equation expresses the fundamental formulation of a conservation

principle. The mathematical formulation of mass conservation considers the change of mass

during a small time ∆t within a control volume of spacing; ∆x, ∆y, and ∆z, representing the

directions in three-dimensional space [5]. There are two ways to approach the calculation.

The first is to consider the mass within the control volume at the beginning and at the end

of the time period, then calculate the difference. The other method is to balance all the

fluxes across the boundaries of the volume. This means that fluxes into the volume have to

be taken as positive, while the fluxes leaving the volume are negative. For three-dimensional

space, there are six faces of control volume to account for, while in one-dimensional space,

there are only two to account for.

Using the first method, consider the mass at the beginning and end of the period t and

t+∆t given by the equation:

θ · c(x, t) ·∆x∆y∆z and θ · c(x, t+∆t) ·∆x∆y∆z,

where θ denotes the share of the total volume, or more often the porosity [7]. ∆x∆y∆z

is the volume, and c denotes the concentration, measured as mass/volume. This gives the

change of mass per time written as:

θ · c(x, t+∆t)− c(x, t)

∆t
·∆x∆y∆z

Using the second method, fluxes in the x-direction across the faces of the control volume

are given by:

θjx−(x, t)∆y∆z and θjx+(x, t)∆y∆z

Where jx− denotes the flux in mass per area in the negative x-direction, and analogously

jx+ denotes the flux in mass per area in the positive x-direction. The term θ∆y∆z, in this

case, denotes the area through which the flow takes place. The balance between both flux

terms is thus given by:

θ(jx−(x, t)− jx+(x, t))∆y∆z
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For simplicity, only the one-dimensional state is considered here, and the other fluxes

across the four other faces are assumed to be zero. Since both formulations measure the

change of mass and thus need to be equal, then:

θ
c(x, t+∆t)− c(x, t)

∆t
·∆x∆y∆z = θ(jx−(x, t)− jx+(x, t))∆y∆z (14)

Division through the volume ∆x∆y∆z and θ in equation (14) yields:

c(x, t+∆t)− c(x, t)

∆t
= −jx−(x, t)− jx+(x, t)

∆x
(15)

From equation (15), a differential equation can be derived by the transition of the finite

grid spacing ∆x and time step ∆t to infinitesimal expressions by the limits ∆x → 0 and

∆t → 0. It follows then as:

∂c

∂t
= − ∂

∂x
jx, (16)

which is a differential formulation for the principle of mass conservation. There is a presump-

tion for the differentiation procedure that the functions c and jx are sufficiently smooth and

differentiable. Equation (16) is valid for one-dimensional transport and is the basis for the

mathematical analysis of transport processes. Equation (16) is also valid if there are no

internal sources or sinks for the concerned biogeochemical species [5]. These are understood

as any process that can destroy or create mass. A source is a process that creates mass, while

a sink is a source that destroys mass [5]. The mathematical formulation of equation (16)

can be extended to consider sources and sinks. If the source or sink rate can be represented

by q(x, t), which may vary spatially and temporally, we only have to add a corresponding

integral term.

∫
∆x

∫
∆t

q(x, t)dtdx
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on the right side of equations (14) and (15). The term is positive if mass is added by

a source and negative if the mass is removed by a sink. Coupling the integral term with

the derivation of (16), the integral term has to be differentiated. This leads to the general

transport equation in one-dimensional space:

θ
∂c

∂t
= − ∂

∂x
θjx + q (17)

2.3 Advection

The process that governs advection is addressed in this section. While equation (17) is

the general transport equation, the equation is hard to adapt to higher dimensions. By

addressing the concept of advection, an adaption that can be used in a higher dimension is

formed. Using the general derivation (17) and a variable A representing mass, momentum,

or energy, the equation can be expressed as the one-dimensional equation:

∂

∂t
A =

∂

∂x
jAx +Q (18)

where jAx represents the fluxes in the x-direction. In the term Q, all sources and sinks

are gathered. The flux term is a component of the flux vector jA corresponding to the spatial

directions. In the small but finite time interval ∆t, the amount of A per unit volume changes

from A(x, t) to A(x, t+∆t). The total amount of change in the control volume is thus given

by (A(x, t + ∆t) − (A(x, t))∆x. In the x-direction, the fluxes across the faces are given by

(jAx(x +∆x/2, t)− jAx(x−∆x/2, t))∆t. The assumption is that the time step ∆t is small

so that the change of the flux terms and also of the sinks and sources during that time can

be neglected. Both expressions of the change within the control volume with a time step

have to be equal. So by applying the changes to (18), a new equation is formed, which is
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expressed as:

(A(x, t+∆t)− A(x, t))∆x = (jAx(x+∆x/2, t)− jAx(x−∆x/2, t))∆t+Q∆x∆t (19)

Equation (19) is simplified in two steps. First, we divide through the product of all

spatial extensions and the finite time step ∆x∆t and obtains:

A(x, t+∆t)− A(x, t)

∆t
=

jAx(x+∆x/2, t)− jAx(x−∆x/2, t)

∆x
+Q (20)

The second step is the transition from finite steps to infinitesimal steps in equation (20),

∆x → ∂x,∆t → ∂t, according to the differential calculus in order to get the continuity

equation in the formulation given by (18). Using the vector notation, the same equation can

be expressed with higher dimensions as:

∂A

∂t
= ∇ · jA +Q (21)

2.4 Diffusion/Dispersion

In order to achieve this for diffusive/dispersive flux, an empirical relationship has to be

introduced, e.g., Fick’s Law [5]. A system with initial concentration differences will finally

reach a constant concentration level if no other processes are present. The empirical (1st)

Fick’s Law is a quantification of diffusive flux for fluid phase stated by the equation:

j = −D∇c (22)

The diffusive flux is proportional to the negative concentration gradient. The factor of

proportionality is the diffusion constant or diffusivity D. The ∇ operator is also used here

to represent the vector formed by multiplying the scalar variable c.
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Another generalization of Fick’s Law is necessary if advection is also present. It can be

observed that in a fluid flowing through a homogeneous porous medium, the diffusivity, as

shown in (22), is not constant but shows itself a strong dependency on the flow velocity.

This is what is referred to as dispersion[5]. This can be written as the equation:

j = −D∇c (23)

Where D represents the dispersion tensor, defined by the equation:

D = (τDmol + αTv)I+
αL − αT

v
vvT

Where I is the unity matrix, the elements of matrix vvT contain the products of the

velocity components, αL is the longitudinal dispersivity, and αT is the transversal dispersivity

[7]. As noted, the dispersion equation is essentially the same as the diffusivity.

2.5 General transport equation

When both advection and diffusion/dispersion are taken into account, the flux vector in

x-direction results as the sum of both contributions. This gives us the equation:

jx = −D
∂c

∂x
+ vc (24)

where in the diffusivity D, different contributions have to be considered. This can also

be written for higher dimensions as:

j = −D∇c+ vc

From here, we use equation (24) to replace the flux terms in the mass conservation

equation (17). This gives us:
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θ
∂c

∂t
=

∂

∂x
θ
(
D

∂c

∂x
− vc

)
+ q

In the case of a constant D, the equivalent formulation is written as:

θ
∂c

∂t
= θD

∂2c

∂x2
− θv

∂c

∂x
+ q (25)

If we want to use equation (25) for higher dimensional problems, we can use the ∇-

operator to obtain:

θ
∂c

∂t
= ∇ · θ(D∇c− vc) + q

2.6 Conclusion

In chapter 2, the one-dimensional transport equation (25) was derived by taking using mass

continuity, advection, and diffusion/dispersion phenomenon. While the equation derived

is one-dimensional, it can be easily modified to derive a higher-dimensional equation. In

chapters 3 and 4, we will explore how to solve the transport equation using the RBF-FD

method numerically.

20



3 RBF-FD framework for solving the transport equation

3.1 Governing equation

In this chapter, we develop an RBF-FD framework to approximate solutions to the 1D

transport equation derived by equation (25) in Chapter 2. Recall the equation is:

θ
∂c

∂t
= θD

∂2c

∂x2
− θv

∂c

∂x
+ q

An analytical solution for the transport equation (25) with constant coefficients and q = 0

was given by Ogata and Banks [17]. In their analysis, the authors were looking for solutions

to the differential equations of longitudinal dispersion in porous media. There, they defined

D to represent the dispersion coefficient, v as the average velocity of fluid or superficial

velocity/porosity of medium, and c as the concentration of solute in the fluid. In addition,

q is assumed to be zero implying that there are no sources or sinks present. The analytical

solution is:

c(x, t) =
cin
2

(
erfc

(
x− vt

2
√
Dt

)
+ exp

( v

D
x
)
erfc

(
x+ vt

2
√
Dt

))
(26)

“erfc” denotes the complementary error function, which is defined as follows:

erfc(ξ) := 1− 2√
π

ξ∫
0

exp(−ς2)dς

where

21



erfc(ξ) := 1− erf(ξ) ; erf(ξ) :=
2√
π

ξ∫
0

exp(−ς2)dς

The solution given by (26) is valid only for a semi-infinite half-space: x ≥ 0 for the initial

condition

c(x, t = 0) = 0

and the boundary conditions:

c(x = 0, t) = cin c(x = ∞, t) = 0

The boundary conditions model is a scenario where the solute is not present in the

system initially but is later introduced into the system with an inflow of concentration cin

at position x = 0. In addition, far away from the boundary, the concentration is assumed to

be constant.

3.2 RBF-FD framework

An RBF-FD method-based numerical method is proposed to approximate the solutions of

equation (25). The known true solution allows us to conduct a numerical convergence analysis

at the end. Furthermore, from there we can develop RBF-FD approaches to approximate the

solutions of other variants of the transport equations that may or may not have analytical

solutions. In terms of solving the equation (25), the semi-infinite domain poses an issue. A

discrete method needs a finite domain. There are no node distributions that can cover the

entire real line.

We propose a workaround for this issue is to perform a transformation on the transport

equation using the hyperbolic tangent function. This will remap the domain of the problem
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from an infinite domain to a finite domain between 0 and 1. Taking the equation (25), and

also the assumption made by Ogata and Banks that there are no sources or sinks, the term

θ can be eliminated. This gives us the equation:

∂c

∂t
= D

∂2c

∂x2
− v

∂c

∂x

Let ξ = tanh(x), and note that tanh2(x) + sec2(x) = 1. Then:

∂ξ

∂x
= sech2(x) = 1− ξ2

Now by applying the chain rule, the term
∂c

∂x
becomes:

∂c

∂x
=

∂c

∂ξ

∂ξ

∂x
= (1− ξ2)

∂c

∂ξ

and the term
∂2c

∂x2
becomes:

∂2c

∂x2
=

∂

∂x

( ∂c

∂x

)
=

∂

∂ξ

(∂c
∂ξ

∂ξ

∂x

)∂ξ
∂x

Now by applying the chain rule and the product rule, the second derivative term be-

comes:

[∂2c

∂ξ2
∂ξ

∂x
+

∂c

∂ξ

∂

∂ξ

(∂ξ
∂x

)]∂ξ
∂x

=
[
(1− ξ2)

∂2c

∂ξ2
− 2ξ

∂c

∂ξ

]
(1− ξ2)

When redistributing, the final equation becomes:

∂2c

∂x2
= (1− ξ2)2

∂2c

∂ξ2
− 2ξ(1− ξ2)

∂c

∂ξ

The final proposed equation using the transformation is:
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∂c

∂t
= D

[
(1− ξ2)2

∂2c

∂ξ2
− 2ξ(1− ξ2)

∂c

∂ξ

]
+ v(1− ξ2)

∂c

∂ξ
(27)

With equation (27), the proposed RBF-FD method has all the necessary conditions

satisfied prior to the setup. The method requires some knowledge of coding. First, a node

distribution is generated from 0 to 1. Let us assume that we have N total nodes. Then the

differentiation matrices are set up. These matrices represent the terms ∂c/∂ξ and ∂2c/∂ξ2.

This is done by first differentiating the original RBF once and twice with respect to ξ.

Afterward, the local collocation matrices and the local weights for the differential operators

are found, then they are assigned to the differentiation matrices.

To resolve the discretization of the time steps, a Backward Euler approach was taken.

This is an implicit method where the unknown future value is on both sides of the equation.

Using the equation:

ci+1 − ci

∆t
= D̃ci+1 (28)

where ci represents the known value at the current time step, ci+1 the unknown value

one time step forward, and D̃ represents the discretized differential operators from equation

(27). That is, D̃ is RBF-FD discretized D

[
(1− ξ2)2

∂2

∂ξ2
− 2ξ(1− ξ2)

∂

∂ξ

]
+ v(1 − ξ2)

∂

∂ξ
.

Solving equation (28) for ci we obtain the equation:

ci+1 −∆t D̃ ci+1 = ci

After factoring the term ci+1, the equation becomes

ci+1(I −∆t D̃) = ci

Where I is the N × N identity matrix. Assume, (I −∆t D̃) as D, and then we have a
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liner system of equations:

Dci+1 = ci (29)

that can be solved using any linear system of equations solver. We used MATLAB’s back-

slash operator to solve the system of equations (29). In order to handle Dirichlet boundary

conditions, the first and the last rows of D were replaced by the rows

[
1 0 · · · 0

]
1×N

and

[
0 0 · · · 1

]
1×N

respectively. Then the first and last entries of the right-hand side of

the equation (29) were replaced with appropriate boundary concentration values.

3.3 Numerical results

This subsection provides numerical results for approximating the solution for the equa-

tion:

∂c

∂t
= D

[
(1− ξ2)2

∂2c

∂ξ2
− 2ξ(1− ξ2)

∂c

∂ξ

]
+ v(1− ξ2)

∂c

∂ξ
(30)

Subjected to:

c(ξ, t = 0) = 0

and the boundary conditions:

c(ξ = 0, t) = cin c(ξ = 1, t) = 0

The parameters used for the analysis were that the velocity v and inflow value cin were

set to 1, and the diffusivity D was set to 0.1. The convergence depends on the degree of the

augmented polynomial. We observed that the convergence is two less than the polynomial

degree, i.e., is, p − 2 is the order of convergence, where p is the degree of the polynomial.

The convergence analysis is done by solving the equation of E = chp, where p is the order
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of convergence, E is the error, h is the number of nodes, and c is a constant. By applying

logarithms to both sides, we obtain the linear equation log(E) = p log(h) + log(c) where p

represents the slope. The number of nodes for this analysis started at N = 100 and doubled

in number to N = 1600 nodes.

In Figure 3, a third, fourth, and fifth-degree polynomial is compared to the first, second,

and third-order convergence, respectively. The results show that the error decay of the

approximations is parallel to their respective orders of convergence. For instance, following

the pattern, we can expect 4th-order convergence when a 6th-degree polynomial is used with

RBFs.
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Figure 3: Error decay with respect to h → 0 for different augmented polynomials.

Furthermore, Figure 4 shows the approximated solution as a space-time surface plot. In

addition, another numerical test was conducted with different parameters. For the second

test, in Figure 5, the solution is visualized for the first 12 inches of the domain. For this test,

the chosen parameters were D = 0.5, v = 0.6, and cin = 1 [20]. The approximated solution

at each hour was plotted along with the corresponding true solution. The true solution at
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each hour is plotted with dashed lines, and the approximated solution is with other curves.

Again, we could observe that the RBF-FD method provides a good approximation of the

true solution.

Figure 4: The solution of 1D transport visualized as a surface plot.
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True solution vs approximated solution

Figure 5: The true solution vs. approximated solution at each hour. The true solution is
depicted from dashed lines and the approximated solution from other lines.
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3.4 Conclusion

In this chapter, we introduced a methodology for solving the 1D transport equation on a

semi-infinite domain. We proposed a hyperbolic tangent transformation to map the semi-

infinite domain to a finite domain. We also showed that the RBF-FD method could produce

high-accuracy results when solving the said equation. This latter part is shown by Figure 3.

For instance, we showed that when a 4th-degree polynomial was appended to the RBF, the

error decay followed a 2nd-order convergence. Overall, the rate of convergence is observed to

be O(hp−2), where p is the degree of the appended polynomial. The results of the simulation

in Figure 5 show that the true and approximate solutions are highly similar.
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4 Transport equation with degradation and decay

4.1 Decay and degradation

In this chapter, an exploration of the effects of decay and degradation on the transport

equation will be discussed. While not a true transport phenomenon, all organic matter

and organic substances are subject to degradation. Bacteria usually cause degradation in a

biochemical process, and the conditions around the bacteria determine the activity. However,

decay generally is used for physical or chemical processes that cause a loss of substance. Both

of these processes can be simply expressed mathematically by the term q in equation (25),

which represents the presence of sources or sinks. The general approach recognizes losses q

being proportional to a power of the concentration c. This is written as:

q = −λcn (31)

Where the integer n is the order of degradation, and λ is the so-called decay or degra-

dation constant. λ is generally dependent on many variables present in the environment of

the system that is in question. This new term given by (31) is substituted into the equation

given by (25) and becomes:

θ
∂c

∂t
= θD

∂2c

∂x2
− θv

∂c

∂x
− λcn (32)

With this equation, it is possible to treat transport, decay, and degradation simulta-

neously. Several common physical examples of this equation were explored by Wexler in
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his 1992 paper [20]. In the paper, the author explores analytical solutions for the one-

dimensional form of the transport equation (32) for the dispersion phenomenon in soil or

adsorption columns. In the analysis, four different cases are observed for infinite and finite

domains. The work done by Wexler is comparable to our research. From these cases, we

consider two of them.

4.2 Problems with an infinite domain

The first analysis is on the 1D transport equation on an infinite domain. An example of

transport in an infinite system might be the injection of a solute into the center of a long

soil column. In this example the interest is in the spread of the solute in both the up-

gradient and down-gradient of the source. The conditions of the problem are similar to

that of the equation solved in chapter 3. Here the partial differential equation has initial

conditions:

c(x, t = 0) = 0

and the boundary conditions:

c(x = 0, t) = c0 &
∂c

∂x
(x = ∞, t) = 0

Van Genuchten has already produced the analytical solution for this partial differential

equation[11], and was modified by Wexler [20]. The solution we will use is a modified version

of the one provided by Wexler, written as:

c(x, t) = c0 exp(−λt)

(
1− 1

2
erfc

(
x− vt

2
√
Dt

)
− 1

2
exp

(vx
D

)
erfc

(
x+ vt

2
√
Dt

))
+

cin
2

(
exp

(
v − u

2D
x

)
erfc

(
x− ut

2
√
Dt

)
+ exp

(
v + u

2D
x

)
erfc

(
x+ ut

2
√
Dt

))
,

(33)

where u =
√
v2 − 4λD. The solution consists of two parts; the first describes the decline
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of the original concentration co, and the second is the change of the inflow concentration

cin in the 1D set-up. As this situation is on an infinite domain, a similar issue arises as in

chapter three. There we proposed a transformation of the 1D equation using the hyperbolic

tangent function. The equation derived in (32) incorporates the decay factor. However, it

does not introduce any new derivatives. Therefore the equation derived in chapter 3 (27)

becomes:

∂c

∂t
= D

[
(1− ξ2)2

∂2c

∂ξ2
− 2ξ(1− ξ2)

∂c

∂ξ

]
+ v(1− ξ2)

∂c

∂ξ
− λcn (34)

A similar approach to chapter 3 is used to resolve the discretization of the time steps.

The main difference that equation (28) does not resolve is the λcn term. For simplicity,

the order of decay will be set to 1. The λc term is then added to the end of (28) resulting

in:

ci+1 − ci

∆t
= D̃ci+1 − λci+1, (35)

where ci represents the known value at the current time step, ci+1 the unknown value one

time step forward, and D̃ represents the discretized differential operators from equation

(27). That is D̃ is RBF-FD discretized D
[
(1− ξ2)2

∂2

∂ξ2
− 2ξ(1− ξ2)

∂

∂ξ

]
+ v(1− ξ2)

∂

∂ξ
. The

difference between this discretization and that of equation (34) is that the λc term is taken

out. Solving equation (35) for ci we obtain the equation:

ci+1 −∆t D̃ ci+1 −∆t λ ci+1 = ci

After factoring the term ci+1, the equation becomes

ci+1(I −∆t D̃ −∆t λI) = ci,
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where I is the N × N identity matrix. We then assume the matrix (I −∆t D̃ −∆t λI) as

D, and then we have a linear system of equations

Dci+1 = ci, (36)

that can be solved using any linear system of equations solver. We used MATLAB’s back-

slash operator to solve the system of equations (36). In order to handle both Dirichlet

Neumann boundary conditions, the first and the last rows of D were replaced by the rows[
1 0 · · · 0

]
1×N

and

[
Dx Dx · · · Dx

]
1×N

respectively. The term Dx represents the

terms from the differentiation matrix for the first derivative. Then the first and last en-

tries of the right-hand side of the equation (36) were replaced with appropriate boundary

concentration values.

4.3 Numerical results

This subsection provides numerical results for approximating the solution for the equation

(32):

θ
∂c

∂t
= θD

∂2c

∂x2
− θv

∂c

∂x
− λcn

Subject to:

c(x, t = 0) = 0

and the boundary conditions:

c(x = 0, t) = c0 and
∂c

∂x
(x = ∞, t) = 0

First, we solved the equation with λ = 0 and later compared the solutions for λ ̸= 0. The
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parameters used were: the velocity v = 0.6 in/hr, the dispersion factor D = 0.6 in2/hr, the

decay factor λ = 0.0 per hr, and the initial concentration c0 = 1.0 mg/L. We also assume

that the fluid is of constant density and viscosity, the solute may be subject to first-order

chemical transformations, the flow is in the x-direction only with constant velocity, and the

longitudinal dispersion coefficient (D) is constant. Figure 6 shows the solutions for times T

- 2.5 hrs, 5 hrs, 10 hrs, 15 hrs, and 20 hrs.
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Solute transport in a semi-infinite domain

Figure 6: The solution of equation (32) (infinite domain) for times (hours) T - 2.5, 5, 10, 15,
and 20.

Next, we solved the equation (32) with the same parameters and assumptions, except we

chose λ = 0.01 per hr and λ = 0.5 per hr. Figures 7 and 8 show the solutions for times T -

2.5 hrs, 5 hrs, 10 hrs, 15 hrs, and 20 hrs for λ = 0.01 per hr and λ = 0.5 per hr, respectively.

The effect of λ can be clearly seen on the approximations as when we increase λ, we observe

a faster decay in concentration.
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Figure 7: The solution of equation (32) (infinite domain) for times (hours) T - 2.5, 5, 10, 15,
20, and λ = 0.01 per hr.
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Figure 8: The solution of equation (32) (infinite domain) for times (hours) T - 2.5, 5, 10, 15,
20, and λ = 0.5 per hr.
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4.4 Problems with a finite domain

While the infinite domain has some physical applications, many common examples have

known distances as the domain. One such example is that of a septic tank drain field. In

this scenario, the net rate of change of solute mass within a volume of porous media is equal

to the difference between the flux of solute in and out of the volume adjusted for the loss

or gain of the solute mass because of chemical reactions. The flux is in controlled by both

advection and dispersion, while the decay and degradation are controlled by the chemical

reactions the contaminant has as it travels through the medium. A key observation is that

the distance between where the septic field lies and the water table is a known quantity and

is close enough to have an effect on the magnitude of the concentrations [20].

In the case of the finite domain, the analytical solutions are not compact as in the previous

case. Consider the partial differential equation defined in (32) with initial condition:

c(x, t = 0) = 0

subject to boundary conditions:

c(x = 0, t) = co and
∂c

∂x
(x = L, t) = 0

The solution was solved analytically by Van Genuchten and Alves [11] and modified by

Wexler [20]. It is expressed as:

C(x, t) = C0


exp

[
(V − U)x

2D

]
+

(U − V )

(U + V )
exp

[(
V + U

2D

)
x− UL

D

]
[
1 +

(U − V )

(U + V )
exp

(
−UL

D

)]

−2 exp

[
V x

2D
− λt− V 2t

4D

] ∞∑
i=1

βi sin

(
βix

L

)[
βi

2 +

(
V L

2D

)2
]
exp

[
−βi

2Dt

L2

]
[
β2 +

(
V L

2D

)2

+
V L

2D

][
βi

2 +

(
V L

2D

)2

+
λL2

D

]


(37)
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where U =
√
V 2 + 4λD and βi are the roots of the equation

β cot β +
VL

2D
= 0. (38)

This equation approximates the solution to (32) on a finite domain. However, it is an

approximation where the roots βi are also approximated. The roots of equation (38) were

first given in Carslaw and Jaeger in 1959 [3] for various values of the constant V L/2D.

To find more roots for the equation, we could use a non-linear root-finding algorithm such

as Newton’s method. We propose that we use the RBF-FD method to approximate these

solutions.

Discretizing the time steps requires a similar approach to the infinite domain problem

with a small change. In the Backward Euler approach, D̃ represents the discretization of

equation (32) rather than the transformed equation (34). This leads to a similar result:

Dci+1 = ci

Using the same parameters that Wexler used, Figure 8 was produced. These parameters

are: v = 0.6 in/hr, D = 0.6 in2/hr, L = 12 in, λ = 0.0 per hr, and c0 = 1.0 mg/L. We also

assumed that the fluid is of constant density and viscosity, the solute may be subject to first-

order chemical transformations, the flow is in the x-direction only with constant velocity,

and the longitudinal dispersion coefficient D is constant. [20].

The results from Figure 9 are very similar to the infinite domain case when compared to

Figure 6). We could think that the infinite domain functions as a limiting solution of the

finite domain case L → ∞. Solving for a finite domain is essentially the same as solving

for the much nicer infinite domain; however, the finite domain PDE does not require any

transformation to solve.

Another interesting test case to look at is when the equation (32) has the Cauchy bound-
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Figure 9: The solution of equation (32) (finite domain) for times (hours) T - 2.5, 5, 10, 15,
and 20.

ary conditions. Physically, this depicts that the flux across a boundary is proportional to

the difference between concentration values on the two opposite sides of the boundary. In

other words, when the inflow is a mixed solute, it is transported through the domain by

advection and dispersion [20]. Consider the partial differential equation defined in (32) with

initial condition:

c(x, t = 0) = 0

Subjected to boundary conditions:

vco = vc−D
∂c

∂x
and

∂c

∂x
(x = L, t) = 0 (39)

and similar parameters and assumptions from the infinite and finite domain problems [20].
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The approximations for this PDE for times (hours) T - 2.5, 5, 10, 15, and 20 are shown

in figure 10. By observing Figure 9, we could clearly see the effect of the new boundary

condition near x = 0.
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Figure 10: The solution of equation (32) (finite domain) with Cauchy type boundary condi-
tions for times (hours) T - 2.5, 5, 10, 15, and 20.

The results of Figure 10 show that the RBF-FD method can handle cases with Cauchy

boundary conditions. The major difference is how the first and last rows are represented in

D from equation (36). These rows were replaced respectively by:

[
v −D ·Dx −D ·Dx · · · −D ·Dx

]
1×N

and

[
Dx Dx · · · Dx

]
1×N

The term Dx represents the terms from the differentiation matrix for the first derivative,

and D represents the diffusion constant. Similarly, the first and last entries of the right-hand

side of the equation (36) were replaced with appropriate boundary concentration values from

(39).
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4.5 Conclusion

In this chapter, we introduced the concept of degradation and decay and then incorporated

it into the transport equation (25). The RBF-FD method was then used to solve the new

equation over a semi-infinite and finite domain numerically. The results showed that the infi-

nite domain could be considered as a limiting case to the finite domain case. We also solved

the equation using Dirichlet, Neumann, and Cauchy boundary conditions. Implementing

these boundary conditions into the RBF-FD method only requires the changing of two rows

of a matrix. The equation was solved for different λ values, with results showing that the

change in concentration happens faster over time with a higher λ value.
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5 Overview

Solving the one-dimensional transport equation (25) analytically can be simple, but when

trying to solve it in higher dimensions, the analytical solution may not exist or is hard

to solve. This thesis explores a numerical approach to solving the transport equation for

one dimension. However, the derivation in chapter 2 and the methods used in chapters

3 and 4 can be easily adapted to higher dimensions. This alleviates the complexity that

solving the equation analytically brings. In addition, the MATLAB program we wrote to

approximate the solutions of the transport equation can be easily modified to accommodate

various boundary conditions.

The work in the previous chapters shows that the RBF-FD method is a useful numerical

tool for solving complex PDEs such as the transport equation. After a brief exploration into

the history behind the RBF-FD method and deriving the transport equation (25), the RBF-

FD method was applied to the basic transport equation. In this application, a transformation

using the hyperbolic tangent function to map the semi-infinite domain to a finite one was

introduced. The need to do a transformation arose due to the infinite domain specified by

the boundary conditions. In the following convergence analysis, it was shown that if p is

the degree of the appended polynomial to the RBF, the order of convergence is of O(hp−2),

where h is the fill distance.

In Chapter 4, the concept of degradation and decay was introduced into the transport

equation. Using the work provided by Wexler [20], the RBF-FD method was used in the

approach to solving the transport equation with linear decay and degradation present in both

infinite and finite domains. The infinite domain problem was found to be relatively similar to
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that of the problem discussed in Chapter 3. In addition, the new transport equation (32) was

solved for problems using various boundary conditions to show that the RBF-FD method

can easily handle any type of boundary condition and produce accurate results.

There are limitations to the approach presented in this thesis. The first limitation is

dealing with non-linear equations. RBF-FD method can be used to solve non-linear PDEs

but requires methodologies to handle non-linearity. Another limitation can be shown through

the Burger equation. This equation is similar to the transport equation, however the term

v in equation 25) is not constant but replaced by the term c. While not impossible to

implement the RBF-FD method for these types of equations, it falls outside of the scope of

this thesis. It is an avenue worth pursuing for future research.

There are also several other avenues that were not explored in this thesis. A major concept

tied to transport is that of sorption. In chapter 2; during the derivation of the transport

equation; advection, diffusion, and dispersion could be formulated separately for both fluid

and solid phases. However, the interaction between fluids and solids is an important process

present in many environmental systems [5]. Sorption can be broadly categorized by the

speed of the process into general types: fast and slow sorption [5]. While slow sorption can

be solved relatively easily using the methods discussed in chapter 4, fast sorption requires the

solving of a system of PDEs that govern transport for both fluids and solids. This requires

some modification of the RBF-FD method and solving a coupled system of PDEs. Due to

the time constraints, this fell outside the scope of the project and is something to look into

for future work.
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